Справочник по математикевероятность суммы двух событий вероятность объединения двух событий независимые события независимость двух событий вероятность произведения двух независимых событий несовместные событияТеория вероятностей и статистикавероятность суммы двух событий вероятность объединения двух событий независимые события независимость двух событий вероятность произведения двух независимых событий несовместные события Теория вероятностей

 

Вероятность суммы двух событий. Независимость двух событий. Вероятность произведения двух независимых событий

Содержание

вероятность суммы двух событий вероятность объединения двух событий Вероятность суммы двух событий
несовместные события Несовместные события
независимые события независимость двух событий вероятность произведения двух независимых событий Независимость двух событий. Вероятность произведения двух независимых событий
 

вероятность суммы двух событий вероятность объединения двух событий независимые события независимость двух событий вероятность произведения двух независимых событий несовместные события

Вероятность суммы двух событий

Пусть   A   и   B   – два произвольных события в случайном эксперименте с множеством элементарных исходов  Ω .

Справедливо следующее утверждение.

УТВЕРЖДЕНИЕ 1. Вероятность суммы двух событий равна сумме вероятностей этих событий минус вероятность их произведения.

Другими словами, верна формула:

вероятность суммы двух событий вероятность объединения двух событий

(1)

ДОКАЗАТЕЛЬСТВО. Рассмотрим диаграммы Эйлера – Венна для суммы двух событий и произведения двух событий, разместив их на одном рисунке (рис.1).

вероятность суммы двух событий вероятность объединения двух событий
Событие   A
вероятность суммы двух событий вероятность объединения двух событий
Событие   B
вероятность суммы двух событий вероятность объединения двух событий
Событие   A + B
вероятность суммы двух событий вероятность объединения двух событий
Событие   вероятность суммы двух событий вероятность объединения двух событий
 

Рис.1

Проведем доказательство утверждения 1 на примере геометрического определения вероятности.

Если площадь произвольной фигуры   F   обозначить символом   S (F) ,   то из рисунка 1 легко установить справедливость равенства:

вероятность суммы двух событий вероятность объединения двух событий

(2)

которое словами можно выразить так: «Площадь фигуры   A + B   равна сумме площадей фигур   A   и   B   минус площадь фигуры  вероятность суммы двух событий вероятность объединения двух событий».

Если обе части равенства (2) разделить на число   S (Ω) ,   то мы получим равенство

вероятность суммы двух событий вероятность объединения двух событий (3)

В силу геометрического определения вероятности справедливы формулы

вероятность суммы двух событий вероятность объединения двух событий

с помощью которых равенство (3) преобразуется к виду (1), что и завершает доказательство утверждения 1.

Доказательство утверждения 1 для классического определения вероятности проводится аналогичным образом, и мы оставляем его читателю в качестве полезного упражнения.

Несовместные события

ОПРЕДЕЛЕНИЕ. Два события   A   и   B   называют несовместными, если они не пересекаются.

Другими словами, события   A   и   B   несовместны, если

несовместные события

ЗАМЕЧАНИЕ 1. События   A   и   B   несовместны в том, и только в том случае, если событие   B   является подмножеством события   несовместные события,   то есть   несовместные события .

ЗАМЕЧАНИЕ 2. События   A   и   B   несовместны в том, и только в том случае, если событие   A   является подмножеством события   несовместные события,   то есть   несовместные события .

ЗАМЕЧАНИЕ 3. Если события   A   и   B   несовместны, то вероятность их произведения равна нулю.

Другими словами, для несовместных событий   A   и   B   верна формула

несовместные события

ЗАМЕЧАНИЕ 4. Если события   A   и   B   несовместны, то вероятность суммы событий   A + B   равна сумме вероятностей событий   A   и   B .

Другими словами, для несовместных событий   A   и   B   верна формула

P (A + B) = P (A) + P (B)

Независимость двух событий. Вероятность произведения двух независимых событий

Два события   A   и   B   называют независимыми, если появление одного из этих событий никак не влияет на вероятность появления второго события.

ЗАМЕЧАНИЕ 5. Несовместные события и независимые события – это совершенно разные понятия, и их не следует путать.

Справедливо следующее утверждение.

УТВЕРЖДЕНИЕ 2. Вероятность произведения двух независимых событий равна произведению их вероятностей.

Другими словами, для двух независимых событий   A   и   B   верна формула

независимые события независимость двух событий вероятность произведения двух независимых событий несовместные события (4)

Проиллюстрируем справедливость формулы (4) на примере.

ПРИМЕР 1. Случайный эксперимент состоит в подбрасывании двух игральных костей. Одна из игральных костей окрашена в синий цвет, другая – в красный. Найти вероятность того, что на синей игральной кости выпадет число   3 ,   а на красной игральной кости выпадет число   4 .

РЕШЕНИЕ. Сформируем следующую таблицу, в которой записаны все   36   возможных вариантов пар чисел, выпадающих при подбрасывании двух игральных костей. Первая строка таблицы – это числа, выпавшие при бросании синей кости, а первый столбец таблицы – это числа, выпавшие при бросании красной кости. На пересечении строки и столбца указана пара чисел, выпавших на двух костях.

независимые события независимость двух событий вероятность произведения двух независимых событий несовместные события 1 2 3 4 5 6
1 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6
2 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6
3 3, 1 3, 2 3, 3 3, 4 3, 5 3, 6
4 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6
5 5, 1 5, 2 5, 3 5, 4 5, 5 5, 6
6 6, 1 6, 2 6, 3 6, 4 6, 5 6, 6

Благоприятным является только один исход, а именно, клетка с результатом   4, 3 ,   окрашенная в таблице желтым цветом. Следовательно, вероятность события, состоящего в том, что на синей игральной кости выпадает число   3 ,   а на красной игральной кости выпадает число   4 ,   равна  независимые события независимость двух событий вероятность произведения двух независимых событий несовместные события.

Теперь рассмотрим случайный эксперимент, описанный в примере 1, с другой стороны. Для этого обозначим буквой   A   случайное событие, состоящее в том, что на синей игральной кости выпадает число   3 ,   а буквой   B   - случайное событие, состоящее в том, что на красной игральной кости выпадает число   4 .   События   A   и   B   являются независимыми событиями, а их вероятности равны:

независимые события независимость двух событий вероятность произведения двух независимых событий

Событие   независимые события независимость двух событий вероятность произведения двух независимых событий   состоит в том, что на синей игральной кости выпадет число   3  ,   а на красной игральной кости выпадет число   4 .   Поскольку,

независимые события независимость двух событий вероятность произведения двух независимых событий

то в рассматриваемом случайном эксперименте по подбрасыванию двух игральных костей формула (4) верна.

В заключение приведем ещё одну иллюстрацию применимости формулы для вероятности суммы двух событий и формулы для вероятности произведения двух независимых событий.

ПРИМЕР 2. Два стрелка стреляют по мишени. Первый стрелок поражает мишень с вероятностью   0,9 .   Второй стрелок поражает мишень с вероятностью   0,8 .   Найти вероятность того, что мишень будет поражена.

РЕШЕНИЕ. Обозначим буквой   A   случайное событие, состоящее в том, что в мишень попадает первый стрелок, а буквой   B   обозначим случайное событие, состоящее в том, что в мишень попадает второй стрелок. Тогда событие   A + B   означает, что мишень поражена, а событие   независимые события независимость двух событий вероятность произведения двух независимых событий   означает, что в мишень попали оба стрелка. По условию

P (A) = 0,9   и   P (B) = 0,8  

а поскольку события   A   и   B   независимы, то в силу формулы (4)

независимые события независимость двух событий вероятность произведения двух независимых событий

Воспользовавшись формулой (1), находим

независимые события независимость двух событий вероятность произведения двух независимых событий

ОТВЕТ:   0,98

© «Резольвента - учебные материалы», 2009-2024 

Rambler's Top100  Рейтинг@Mail.ru

Метрика Яндекса
 Яндекс.Метрика