Справочник по математикеТеория вероятностей и статистика Теория вероятностей
Операции над событиями. Диаграммы Эйлера – Венна
Содержание
Произведение (пересечение) двух событий | |
Сумма (объединение) двух событий | |
Разность двух событий | |
Симметрическая разность двух событий | |
Переход к противоположному событию |
В теории вероятностей случайными событиями являются подмножества множества элементарных исходов Ω .
Над событиями, как и над любыми множествами, можно совершать следующие операции.
Произведение (пересечение) двух событий
Операцию произведения (пересечения) двух событий A и B обозначают
, или AB, или .
ОПРЕДЕЛЕНИЕ 1. Произведением (пересечением) двух событий A и B называют такое событие, которое состоит из всех элементов, входящих как в событие A , так и в событие B (рис. 1).
|
||||||
Рис.1 |
Сумма (объединение) двух событий
Операцию суммы (объединения) двух событий A и B обозначают
A + B или
ОПРЕДЕЛЕНИЕ 2. Суммой (объединением) двух событий A и B называют такое событие, которое состоит из элементов события A и элементов события B (рис. 2).
|
||||||
Рис.2 |
Разность двух событий
Операцию разности двух событий A и B обозначают
A \ B
ОПРЕДЕЛЕНИЕ 3. Разностью событий A и B называют событие, состоящее из тех элементов события A , которые не входят в событие B (рис. 3).
|
||||||
Рис.3 |
ЗАМЕЧАНИЕ 1. Разностью событий B и A является событие B \ A , изображенное на рисунке 4.
|
||||||
Рис.4 |
Симметрическая разность двух событий
Операцию симметрической разности двух событий A и B обозначают
ОПРЕДЕЛЕНИЕ 4 . Симметрической разностью событий A и B называют событие, состоящее из тех элементов события A , которые не входят в событие B , а также из тех элементов события B , которые не входят в событие A (рис. 5).
|
||||||
Рис.5 |
Переход к противоположному событию
Событие, противоположное к событию A , обозначают
или AC
ОПРЕДЕЛЕНИЕ 5. Противоположным событием к событию A называют событие, состоящее из тех элементов всего множества элементарных событий Ω , которые не входят в событие A (рис. 6).
|
||||||
Рис.6 |
ЗАМЕЧАНИЕ 2. Справедлива формула
ОПРЕДЕЛЕНИЕ 6. Событие Ω называют достоверным событием, пустое множество называют невозможным событием.
ЗАМЕЧАНИЕ 3. Рисунки, на которых наглядно показаны операции над множествами, называют диаграммами Эйлера-Венна. В частности, диаграммами Эйлера-Венна являются рисунки 1-6 .