

НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. СХЕМА БЕРНУЛЛИ

Самарова С.С.

МФТИ, II курс, теория вероятностей

СОДЕРЖАНИЕ

НЕРАВЕНСТВО ЧЕБЫШЕВА	1
ЗАКОН БОЛЫШИХ ЧИСЕЛ	5
СХЕМА БЕРНУЛЛИ	
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ	
ВЕРОЯТНОСТНЫЕ ТАБЛИЦЫ	15

НЕРАВЕНСТВО ЧЕБЫШЕВА

Неравенство Чебышева встречается в теории вероятностей в двух видах: для неотрицательных случайных величин и в общем виде, т.е. для случайных величин, которые могут принимать значения разных знаков.

Неравенство Чебышева (для неотрицательных случайных величин). Пусть случайная величина $\xi \geq 0$ и имеет конечное математическое ожидание $E\xi < \infty$. Тогда для любого $\epsilon > 0$ выполнено неравенство

$$P(\xi \ge \varepsilon) \le \frac{E\xi}{\varepsilon}$$

$$\boldsymbol{\xi} = \boldsymbol{\xi}_1 + \boldsymbol{\xi}_2$$
 ,

где

$$\xi_1 = \begin{cases} \xi \text{ , } & \text{если } \xi \geq \epsilon, \\ 0, & \text{если } \xi < \epsilon, \end{cases} \qquad \text{и} \qquad \xi_2 = \begin{cases} 0 \text{ , } & \text{если } \xi \geq \epsilon, \\ \xi, & \text{если } \xi < \epsilon. \end{cases}$$

Поскольку случайная величина $\xi \geq 0$, то и $\xi_1 \geq 0$, и $\xi_2 \geq 0$. Тогда

$$E\xi = E\xi_1 + E\xi_2 \ge E\xi_1 \ge \varepsilon \cdot P(\xi \ge \varepsilon)$$

Разделив это неравенство на $\varepsilon > 0$, получим неравенство Чебышева.

Доказано.

Неравенство Чебышева (в общем виде). Пусть случайная величина ξ имеет конечную дисперсию $D\xi < \infty$. Тогда для любого $\epsilon > 0$ выполнено неравенство

$$P(|\xi - E\xi| \ge \varepsilon) \le \frac{D\xi}{\varepsilon^2}$$

Доказательство. Из неравенства Чебышева для неотрицательных случайных величин получаем

$$P(|\xi - E\xi| \ge \varepsilon) = P((\xi - E\xi)^2 \ge \varepsilon^2) \le \frac{E(\xi - E\xi)^2}{\varepsilon^2} = \frac{D\xi}{\varepsilon^2}$$

Доказано.

Разберем несколько задач из задания на эту тему.

Задача 1 (задание 7: а, д). По известному «правилу трех сигм» вероятность отклонения случайной величины от своего математического ожидания более, чем на три корня из дисперсии, мала. Найти

$$P(|\xi - E\xi| < 3\sqrt{D\xi}),$$

если ξ имеет:

- 1) нормальное распределение с параметрами a, σ ;
- 2) распределение Пуассона с $E\xi = 0.09$.

Сравнить результат с оценкой, полученной по неравенству Чебышева.

Решение.

1) Ранее (см. пособие для дистанционного занятия «Числовые характеристики случайных величин») для случайной величины ξ , распределенной нормально с параметрами a, σ , мы вычислили математическое ожидание и дисперсию:

$$E\xi = a$$
, $D\xi = \sigma^2$.

Вычислим сначала точное значение вероятности

$$P(|\xi - E\xi| < 3\sqrt{D\xi}).$$

Для этого, воспользовавшись формулой плотности нормального распределения с параметрами a, σ

$$p_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-a)^2}{2\sigma^2}}$$

получаем

$$P(|\xi - E\xi| < 3\sqrt{D\xi}) = P(|\xi - a| < 3\sigma) = P(-3\sigma < \xi - a < 3\sigma) =$$

$$= P(a - 3\sigma < \xi < a + 3\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \int_{a-3\sigma}^{a+3\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}} dx$$

После замены в этом интеграле

$$y = \frac{x - a}{\sigma}$$
, $dy = \frac{dx}{\sigma}$,

находим

$$P(|\xi - E\xi| < 3\sqrt{D\xi}) = \frac{1}{\sqrt{2\pi}} \int_{-3}^{3} e^{-\frac{y^2}{2}} dy = \frac{2}{\sqrt{2\pi}} \int_{0}^{3} e^{-\frac{y^2}{2}} dy$$

Для вычисления значений этого интеграла во всех учебниках и задачниках по теории вероятностей имеется таблица значений функции

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$$

В этом пособии такая таблица приведена в разделе «Вероятностные таблицы». Используя эту таблицу значений для $\Phi_0(x)$ находим

$$P(|\xi - E\xi| < 3\sqrt{D\xi}) = 2\Phi_0(x) = 2 \cdot 0.4987 = 0.9984$$

Теперь получим оценку данной вероятности по неравенству Чебышева

$$P(|\xi - E\xi| \ge 3\sqrt{D\xi}) \le \frac{D\xi}{9D\xi} = \frac{1}{9} \approx 0.1111 \qquad \Longrightarrow \qquad P(|\xi - E\xi| < 3\sqrt{D\xi}) \ge 0.8889$$

Результат, полученный с помощью вероятностных таблиц, входит в область, полученную с помощью неравенства Чебышева.

2) Вычислим точное значение вероятности

$$P(|\xi - E\xi| < 3\sqrt{D\xi})$$

для случайной величины, распределенной по закону Пуассона с математическим ожиданием $E\xi = 0.09$.

Для этого сначала найдем параметр λ данного распределения. Как мы выяснили на прошлом вебинаре (см. пособие для дистанционного занятия «Числовые характеристики случайных величин»), числовые характеристики случайной величины, распределенной по закону Пуассона с параметром λ , равны

$$E\xi = \lambda$$
, $D\xi = \lambda$.

Поэтому

$$\lambda = 0.09;$$
 $D\xi = E\xi = 0.09.$

Тогда

$$P(|\xi - E\xi| < 3\sqrt{D\xi}) = P(|\xi - 0.09| < 0.9) = P(-0.9 + 0.09 < \xi < 0.9 + 0.09) =$$

$$= P(-0.81 < \xi < 0.99) = P(\xi = 0) = e^{-0.09} = 0.9139$$

Здесь мы воспользовались формулой для вероятности, с которой случайная величина, распределенная по закону Пуассона, принимает заданное значение

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 $(k = 0,1,2,3,...).$

Найдем оценку для требуемой вероятности по неравенству Чебышева:

$$P(|\xi - E\xi| \ge 3\sqrt{D\xi}) \le \frac{D\xi}{9D\xi} = \frac{1}{9} \approx 0.1111 \implies P(|\xi - E\xi| < 3\sqrt{D\xi}) \ge 0.8889$$

Видим, что точное значение вероятности входит в интервал оценки, полученный с помощью неравенства Чебышева.

Стоит заметить, что в некоторых случаях улучшить неравенство Чебышева нельзя. Например, в задаче из задания 7 г) приведен пример случайной величины, для которой оценка, полученная по неравенству Чебышева, является точной.

Задача 2 (задание 7 г). Для случайной величины ξ с распределением

$$P(\xi = 1) = P(\xi = -1) = \frac{1}{18}, \quad P(\xi = 0) = \frac{8}{9},$$

Найти

$$P(|\xi - E\xi| < 3\sqrt{D\xi})$$

и сравнить найденную вероятность с оценкой, полученной по неравенству Чебышева.

Решение. Вычислим математическое ожидание и дисперсию случайной величины ξ

$$E\xi = 1 \cdot \frac{1}{18} + (-1) \cdot \frac{1}{18} + 0 \cdot \frac{8}{9} = 0$$

$$D\xi = E\xi^2 - (E\xi)^2 = E\xi^2 = 1 \cdot \frac{1}{18} + 1 \cdot \frac{1}{18} + 0 \cdot \frac{8}{9} = \frac{1}{9}$$

Тогда

$$P(|\xi - E\xi| < 3\sqrt{D\xi}) = P(|\xi| < 1) = P(\xi = 0) = \frac{8}{9}$$

Заметим, что неравенство Чебышева в этом случае превращается в равенство

$$P(|\xi - E\xi| \ge 3\sqrt{D\xi}) \le \frac{D\xi}{9D\xi} = \frac{1}{9}$$
 \implies $P(|\xi - E\xi| < 3\sqrt{D\xi}) = 1 - \frac{1}{9} = \frac{8}{9}$

ЗАКОН БОЛЬШИХ ЧИСЕЛ

Для последовательности случайных величин

$$\xi_1, \xi_2, ..., \xi_n, ...$$

часто требуется оценить средние арифметические

$$\frac{\xi_1 + \xi_2 + \dots + \xi_n}{n}$$

Одну из таких оценок даёт закон больших чисел.

Закон больших чисел. Если у случайных величин

$$\xi_{1}, \xi_{2}, ..., \xi_{n}, ...$$

существуют дисперсии и существует предел

$$\lim_{n \to \infty} \frac{D\xi_1 + D\xi_2 + \dots + D\xi_n}{n^2} = 0 ,$$

то к случайным величинам

$$\xi_1$$
, ξ_2 , ..., ξ_n , ...

применим закон больших чисел, а именно, справедливо равенство

$$\lim_{n\to\infty} P\left\{\left| \begin{array}{c} \frac{\xi_1+\xi_2+\cdots+\ \xi_n}{n} - \frac{E\xi_1+E\xi_2+\cdots+\ E\xi_n}{n} \end{array} \right| < \varepsilon \right\} = 1$$

Усиленный закон больших чисел. Если случайные величины

$$\xi_1, \xi_2, ..., \xi_n, ...$$

одинаково распределены, попарно независимы и имеют конечное математическое ожидание $E\xi_1=a$, то выполнено равенство

$$P\left\{\lim_{n\to\infty}\frac{\xi_1+\xi_2+\cdots+\xi_n}{n}=a\right\}=1$$

Решим задачу на эту тему.

Задача 3 (задание 9). Пусть функция f(x) непрерывна на $0 \le x \le 1$, а

$$\xi_1, \xi_2, \dots, \xi_n$$
...

– независимые случайные величины, равномерно распределенные на отрезке [0,1] .

Доказать, что при любом $\varepsilon > 0$ выполнено равенство

$$\lim_{n\to\infty} P\left\{ \left| \frac{f(\xi_1) + f(\xi_2) + \dots + f(\xi_n)}{n} - \int_0^1 f(x) dx \right| > \varepsilon \right\} = 0$$

Решение. Если ввести обозначение

$$\eta_n = \frac{f(\xi_1) + f(\xi_2) + \dots + f(\xi_n)}{n}$$

то, используя свойства математического ожидания и дисперсии (см. пособие для дистанционного занятия «Числовые характеристики случайных величин»), находим

$$E\eta_{n} = \frac{Ef(\xi_{1}) + Ef(\xi_{2}) + \dots + Ef(\xi_{n})}{n} = Ef(\xi_{1}) = \int_{0}^{1} f(x) dx$$

$$D\eta_{n} = \frac{Df(\xi_{1}) + Df(\xi_{2}) + \dots + Df(\xi_{n})}{n^{2}} = \frac{Df(\xi_{1})}{n} = \frac{Df(\xi_{$$

$$= \frac{1}{n} \left(\int_{0}^{1} f^{2}(x) dx - \left(\int_{0}^{1} f(x) dx \right)^{2} \right) = \frac{A}{n},$$

где

$$A = \int_{0}^{1} f^{2}(x) dx - \left(\int_{0}^{1} f(x) dx\right)^{2}$$

С помощью неравенства Чебышева получаем

$$0 \le P\left(\left| \eta_n - \int_0^1 f(x) \, dx \right| > \varepsilon \right) \le \frac{D\eta_n}{\varepsilon^2} < \frac{A}{n\varepsilon^2}$$

Поскольку

$$\lim_{n\to\infty}\frac{A}{n\varepsilon^2}=0\,,$$

то по теореме о трех последовательностях заключаем, что

$$\lim_{n\to\infty} P\left\{ \left| \frac{f(\xi_1) + f(\xi_2) + \dots + f(\xi_n)}{n} - \int_0^1 f(x) dx \right| > \varepsilon \right\} = 0$$

Доказательство закончено.

Задача 4 (задание 10). Последовательности

$$\boldsymbol{\xi}_{1}\,{}_{,}\,\boldsymbol{\xi}_{2}\,{}_{,}\,\ldots\,,\boldsymbol{\xi}_{n}\,{}_{,}\,\ldots\qquad\boldsymbol{u}\qquad\boldsymbol{\eta}_{1}\,{}_{,}\,\boldsymbol{\eta}_{2}\,{}_{,}\,\ldots\,,\boldsymbol{\eta}_{n}\,{}_{,}\,\ldots$$

образованы одинаково распределенными случайными величинами, независимыми внутри каждой последовательности (случайные величины ξ_n и η_n могут быть зависимыми),

$$E\xi_n = E\eta_n = a$$
, $D\xi_n = D\eta_n < \infty$, $n = 1, 2, ...$

Выполняется ли закон больших чисел для последовательности

$$\zeta_1, \zeta_2, \ldots, \zeta_n, \ldots$$

где

$$\zeta_{2n-1} = \xi_n, \ \zeta_{2n} = \eta_n, \quad n = 1,2,...$$
?

Выполняется ли усиленный закон больших чисел?

Решение. Для любого $\varepsilon > 0$ обозначим

$$A_k = \left\{ \omega \colon \left| \frac{\xi_1 + \xi_2 + \dots + \xi_k}{k} - \alpha \right| \ge \varepsilon \right\}, \qquad k = 1, 2, \dots$$

$$B_k = \left\{\omega\colon \left|\frac{\eta_1 + \eta_2 + \dots + \eta_k}{k} - a\right| \ge \varepsilon\right\}, \qquad k = 1, 2, \dots$$

$$C_{k,m} = \left\{\omega\colon \left|\frac{\xi_1 + \xi_2 + \dots + \xi_k + \eta_1 + \eta_2 + \dots + \eta_m}{k + m} - a\right| \ge \varepsilon\right\}, \qquad k, m = 1, 2, \dots$$

Тогда для любых натуральных чисел k и m выполнено включение

$$\overline{A}_k \cap \overline{B}_m \subset \overline{C}_{k,m}$$

Действительно, пусть $\omega \in \overline{A}_k \cap \overline{B}_m$. В этом случае

$$\left\{ \left| \begin{array}{c} \frac{\xi_1 + \xi_2 + \dots + \ \xi_k}{k} - a \right| < \varepsilon \\ \left| \begin{array}{c} \frac{\eta_1 + \eta_2 + \dots + \ \eta_m}{m} - a \right| < \varepsilon \end{array} \right. \iff \left\{ \begin{array}{c} ka - k\varepsilon < \xi_1 + \xi_2 + \dots + \ \xi_k < ka + k\varepsilon \\ ma - m\varepsilon < \eta_1 + \eta_2 + \dots + \ \eta_m < ma + m\varepsilon \end{array} \right.$$

Складывая неравенства, получаем

 $(k+m)a-(k+m)ε < ξ_1 + ξ_2 + \cdots + ξ_k + η_1 + η_2 + \cdots + η_m < (k+m)a + (k+m)ε$ откуда вытекает неравенство

$$\left| \frac{\xi_1 + \xi_2 + \dots + \xi_k + \eta_1 + \eta_2 + \dots + \eta_m}{k + m} - a \right| < \varepsilon$$

Значит, $\omega \in \overline{C}_{k,m}$.

Следовательно, для любых натуральных чисел k и m также выполнено включение

$$C_{k,m} \subset A_k \cup B_m$$

Теперь заметим, что

$$\left| \frac{\zeta_1 + \zeta_2 + \dots + \zeta_n}{n} - a \right| = \left| \frac{\xi_1 + \xi_2 + \dots + \xi_{\left[\frac{n+1}{2}\right]} + \eta_1 + \eta_2 + \dots + \eta_{\left[\frac{n}{2}\right]}}{\left[\frac{n+1}{2}\right] + \left[\frac{n}{2}\right]} - a \right|$$

Поэтому

$$\left\{\omega\colon \left|\ \frac{\zeta_1\,+\,\zeta_2\,+\,\cdots\,+\,\,\zeta_n}{n}\,-\,a\,\right|\geq \varepsilon\right\} = C_{\left\lceil\frac{n+1}{2}\right\rceil,\left\lceil\frac{n}{2}\right\rceil} \subset A_{\left\lceil\frac{n+1}{2}\right\rceil} \cup B_{\left\lceil\frac{n}{2}\right\rceil}$$

а, значит, выполнено неравенство

$$P\left\{\left|\begin{array}{c} \frac{\zeta_1+\zeta_2+\cdots+\zeta_n}{n}-a\right|\geq \varepsilon\right\}\leq\\\\ \leq P\left\{\left|\begin{array}{c} \frac{\xi_1+\xi_2+\cdots+\xi_{\left[\frac{n+1}{2}\right]}}{\left[\frac{n+1}{2}\right]}-a\right|\geq \varepsilon\right\}+P\left\{\left|\begin{array}{c} \frac{\eta_1+\eta_2+\cdots+\eta_{\left[\frac{n}{2}\right]}}{\left[\frac{n}{2}\right]}-a\right|\geq \varepsilon\right\} \end{cases}$$

Поскольку к каждой из последовательностей $\{\xi_n\}$ и $\{\eta_n\}$ применим закон больших чисел, то каждая из вероятностей в правой части неравенства стремится к нулю при $n \to \infty$

$$\lim_{n\to\infty} P\left\{ \left| \frac{\zeta_1 + \zeta_2 + \dots + \zeta_n}{n} - a \right| \ge \varepsilon \right\} = 0$$

то есть к последовательности $\{\zeta_n\}$ применим закон больших чисел.

Теперь рассмотрим множество

$$C = \left\{ \omega \colon \nexists \lim_{n \to \infty} \frac{\zeta_1 + \zeta_2 + \dots + \zeta_n}{n} = a \right\} =$$

$$= \left\{ \omega \colon \exists \varepsilon > 0 \ \forall N \ \exists n > N \colon \left| \frac{\zeta_1 + \zeta_2 + \dots + \zeta_n}{n} - a \right| \ge \varepsilon \right\}$$

Как мы уже доказали ранее, множество $\mathcal{C} \subset A \cup B$, где

$$A = \left\{ \omega : \exists \varepsilon > 0 \ \forall N \ \exists n > N : \left| \begin{array}{c} \frac{\xi_1 + \xi_2 + \dots + \ \xi_{\left[\frac{n+1}{2}\right]}}{\left[\frac{n+1}{2}\right]} - a \right| \ge \varepsilon \right\} \\ B = \left\{ \omega : \exists \varepsilon > 0 \ \forall N \ \exists n > N : \left| \begin{array}{c} \frac{\eta_1 + \eta_2 + \dots + \ \eta_{\left[\frac{n}{2}\right]}}{\left[\frac{n}{2}\right]} - a \right| \ge \varepsilon \right\} \end{array}$$

Поскольку к каждой из последовательностей $\{\xi_n\}$ и $\{\eta_n\}$ применим усиленный закон больших чисел, то

$$P(A) = P(B) = 0.$$

Значит, и

$$P(C) \le P(A \cup B) \le P(A) + P(B) = 0$$

Таким образом, к последовательности $\{\zeta_n\}$ применим усиленный закон больших чисел. Решение задачи 4 завершено.

СХЕМА БЕРНУЛЛИ

Схемой Бернулли (последовательностью испытаний Бернулли) называют серию независимых случайных экспериментов, в результате каждого из которых событие A может либо произойти с вероятностью p, либо не произойти с вероятностью q=1-p.

Рассмотрим серию из n испытаний Бернулли и обозначим через μ_n количество испытаний, в результате которых событие A произошло. Величину μ_n часто называют числом «успехов» в n испытаниях Бернулли.

Теорема Бернулли. Вероятность того, что в серии из n испытаний событие A произойдет ровно k раз, выражается формулой Бернулли:

$$P(\mu_n = k) = C_n^k p^k q^{n-k}, \quad k = 0, 1, ..., n$$

При больших значениях n расчеты по формуле Бернулли затруднительны, поэтому обычно используют приближенные формулы, полученные на основании предельных теорем для формулы Бернулли при $n \to \infty$.

Теорема Пуассона. Если $n \to \infty$, $p \to 0$, а $np \to \lambda$, то

$$P(\mu_n = k) \to \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, ..., n$$

Другими словами, при малых значениях p и большом числе испытаний n справедлива формула (пуассоновское приближение):

$$P(\mu_n=k)pprox rac{\lambda_n^k}{k!}e^{-\lambda_n}$$
, где $\lambda_n=np$, $k=0,\ 1,\ 2,\ ...,\ n$

Таблица значений функции

$$p_k(\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

приведена в разделе «Вероятностные таблицы».

При малых значениях q и большом числе испытаний n пуассоновское приближение дает возможность получить приближенное значение также и для вероятностей числа «неудач».

Обычно пуассоновское приближение для вероятностей числа «успехов» используют в случае, когда n велико, а p является малым и выполнено неравенство: $np \le 10$.

В случае, когда n велико, а p и q не являются малыми ($npq \ge 20$), более точным, чем пуассоновское приближение, является нормальное приближение, полученное при помощи теорем Муавра-Лапласа.

Локальная теорема Муавра-Лапласа. Если $\,p\,$ постоянно и существует $\,C>0\,$ такое, что

$$\left| \frac{k - np}{\sqrt{npq}} \right| \le C \tag{1}$$

то

$$P(\mu_n=k)= rac{1}{\sqrt{2\pi npq}} \ e^{-rac{(k-np)^2}{2npq}} \Biggl(1+O\left(rac{1}{\sqrt{n}}
ight)\Biggr)$$
 при $n o\infty$

равномерно по всем k, для которых выполнено неравенство (1).

Интегральная теорема Муавра-Лапласа. Если *р* постоянно, то

$$P\left(a \le \frac{\mu_n - np}{\sqrt{npq}} \le b\right) o \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{t^2}{2}} dt$$
 при $n \to \infty$

равномерно по a, b.

Для практических вычислений используют следующие приближенные формулы:

$$P(\mu_n = k) pprox rac{1}{\sqrt{npq}} \cdot \phi\left(rac{k-np}{\sqrt{npq}}
ight)$$
 , где $\phi(x) = rac{1}{\sqrt{2\pi}} \ e^{-rac{x^2}{2}}$

$$P\left(a \le \frac{\mu_n - np}{\sqrt{npq}} \le b\right) \approx \Phi(b) - \Phi(a) , \quad \text{где} \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
 (2)

В разделе «Вероятностные таблицы» приведена таблица значений функции

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt$$

Для того чтобы с помощью этой таблицы вычислить значения функции $\Phi(x)$, используются следующие свойства:

- если $x \ge 0$, то $\Phi(x) = 0.5 + \Phi_0(x)$,
- если x < 0, то $\Phi(x) = 0.5 \Phi_0(x)$.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 5. В урне находятся 5 красных и 8 синих шаров. Один шар наудачу извлекается из урны и возвращается в неё 4 раза. Найти вероятность того, что при извлечении:

- 3) красный шар появится ровно 3 раза;
- 4) красный шар появится не менее 2-х раз.

Решение. Поскольку перед каждым извлечением одного шара из урны в ней находятся 13 шаров, из которых 5 красных, то вероятность появления красного шара при каждом извлечении одна и та же и равна $\frac{5}{13}$.

По формуле для вероятности числа «успехов» в последовательности из 4 независимых испытаний Бернулли с вероятностью «успеха» в каждом испытании $p=\frac{5}{13}$, получаем:

в случае 1)

$$P(\mu_4 = 3) = C_4^3 \cdot \left(\frac{5}{13}\right)^3 \cdot \left(\frac{8}{13}\right) = \frac{4000}{28561} \approx 0.14$$

в случае 2)

$$P(\mu_4 \ge 2) = P(\mu_4 = 2) + P(\mu_4 = 3) + P(\mu_4 = 4) = 1 - P(\mu_4 = 0) - P(\mu_4 = 1) = 1 - C_4^0 \left(\frac{5}{13}\right)^0 \left(\frac{8}{13}\right)^4 - C_4^1 \left(\frac{5}{13}\right)^1 \left(\frac{8}{13}\right)^3 \approx 1 - (0.62)^4 - 4 \cdot 0.38 \cdot (0.62)^3 = 0.49$$

Ответ: 0.14: 0.49

Задача 6. При производстве микросхем на 1000 готовых изделий в среднем приходится 5 бракованных. Найти вероятность того, что в партии из 180 микросхем окажется ровно 3 бракованных микросхемы.

Решение. Пусть событие A состоит в том, что случайно выбранная микросхема является бракованной. Вероятность этого события равна p=0.005. Найдем вероятность того, что при n=180 испытаниях Бернулли событие A произойдет ровно 3 раза.

Поскольку в нашем случае

$$\lambda = np = 180 \cdot 0{,}005 = 0{,}9 < 10{,}$$

то, воспользовавшись пуассоновским приближением, по таблице 3 значений функции

$$p_k(\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

для $\lambda = 0.9$; k = 3 находим

$$P(\mu_{180} = 3) \approx 0.04940$$

Ответ: 0,0494.

Задача 7. Какова вероятность того, что при 4500 бросаниях игральной кости 6 очков на ней выпадет от 710 до 810 раз?

Решение. Пусть событие A состоит в том, что при бросании игральной кости на ней выпало 6 очков. Вероятность этого события равна $p=\frac{1}{6}$. Найдем вероятность того, что при n=4500 испытаниях Бернулли событие A произойдет от 710 до 810 раз.

Поскольку в этой задаче

$$q = \frac{5}{6}$$
, $np = 750$, $npq = 625 > 20$,

то будем использовать приближенную формулу (2), полученную из интегральной теоремы Муавра-Лапласа:

$$P(710 \le \mu_{4500} \le 810) = P\left(\frac{710 - 750}{25} \le \frac{\mu_{4500} - 750}{25} \le \frac{810 - 750}{25}\right) =$$

$$= P\left(-1.6 \le \frac{\mu_{4500} - 750}{25} \le 2.4\right) \approx$$

$$\approx \Phi_0(2.4) + \Phi_0(1.6) = 0.4918 + 0.4452 = 0.937$$

Ответ: 0,937.

Задача 8. В поселке 7350 жителей. Один раз в сутки из поселка в город ходит поезд. Каждый житель поселка раз в неделю ездит в город на этом поезде, выбирая день для поездки случайным образом и независимо от других жителей поселка. Какой наименьшей вместимостью должен обладать поезд, чтобы он переполнялся в среднем не чаще, чем 1 раз в 100 дней?

Решение. Рассмотрим какой-нибудь день недели, например, понедельник. Пусть событие A состоит в том, что житель поселка решил поехать в город в понедельник. Вероятность события A не зависит от выбора жителя поселка и равна $p = \frac{1}{7}$.

Обозначим буквой M число мест в поезде. Для того, чтобы поезд в понедельник не был переполнен, нужно, чтобы число жителей, выбравших понедельник для поездки, не превышало M. Другими словами, при n=7350 испытаниях Бернулли событие A должно произойти не более M раз.

В соответствии с условием задачи необходимо, чтобы

$$P(\mu_{7350} \le M) \ge 0.99.$$

Поскольку

$$q = \frac{6}{7}$$
 , $np = 1050$, $npq = 900 > 20$,

то можно воспользоваться приближенной формулой (2):

$$P(\mu_{7350} \le M) = P\left(\frac{\mu_{73500} - 1050}{30} \le \frac{M - 1050}{30}\right) \approx \Phi\left(\frac{M - 1050}{30}\right) \ge 0,99$$

С помощью таблицы 2 для значений функции u_{α} , определяемой равенством $\alpha = \frac{1}{\sqrt{2\pi}}$

$$\int_{u_{\alpha}}^{+\infty} e^{-\frac{t^2}{2}} dt ,$$

при $\alpha = 0.01$ находим

$$u_{0,01} = 2,326$$
 .

Следовательно,

$$\frac{M - 1050}{30} \ge 2{,}326 \quad \Leftrightarrow \quad M \ge 1119{,}78 \quad \Leftrightarrow \quad M \ge 1120$$

Ответ: 1120.

ВЕРОЯТНОСТНЫЕ ТАБЛИЦЫ

ТАБЛИЦА 1. ЗНАЧЕНИЯ ФУНКЦИИ ЛАПЛАСА $\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt$

26	Сотые доли									
Х	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	03133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	04946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	04985	0,4985	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990

ТАБЛИЦА 2. ЗНАЧЕНИЯ ФУНКЦИИ u_{α} , ОПРЕДЕЛЯЕМОЙ РАВЕНСТВОМ

$$\alpha = \frac{1}{\sqrt{2\pi}} \int_{u_{\alpha}}^{+\infty} e^{-\frac{t^2}{2}} dt$$

Ī	α	0,001	0,005	0,010	0,015	0,020	0,025	0,030	0,035	0,040	0,045	0,050
Ī	u_{α}	3,0902	2,5758	2,3263	2,1701	2,0537	1,9600	1,8808	1,8119	1,7507	1,6954	1,6449

ТАБЛИЦА 3. ЗНАЧЕНИЯ ФУНКЦИИ $p_k(\lambda) = rac{\lambda^k}{k!} e^{-\lambda}$

k	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0	0,90484	0,81873	0,74082	0,67032	0,60653	0,54881	0,49659	0,44933	0,40657
1	0,09048	0,16375	0,22225	0,26813	0,30327	0,32929	0,34761	0,35946	0,36591
2	0,00452	0,01638	0,03334	0,05363	0,07582	0,09879	0,12166	0,14379	0,16466
3	0,00015	0,00109	0,00333	0,00715	0,01264	0,01976	0,02839	0,03834	0,04940
4		0,00006	0,00025	0,00072	0,00158	0,00296	0,00497	0,00767	0,01112
5			0,00002	0,00006	0,00016	0,00036	0,00070	0,00123	0,00200
6					0,00001	0,0004	0,00008	0,00016	0,00030
7							0,00001	0,00002	0,00004

k	1,0	2,0	3,0	4,0	5,0
0	0,36788	0,13534	0,04979	0,01832	0,00674
1	0,36788	0,27067	0,14936	0,07326	0,03369
2	0,18394	0,27067	0,22404	0,14653	0,08422
3	0,06131	0,18045	0,22404	0,19537	0,14037
4	0,01533	0,09022	0,16803	0,19537	0,17547
5	0,00307	0,03609	0,10082	0,15629	0,17547
6	0,00051	0,01203	0,05041	0,10419	0,14622
7	0,00007	0,00344	0,02160	0,05954	0,10445
8	0,00001	0,00086	0,00810	0,02977	0,06528
9		0,00019	0,00270	0,01323	0,03627
10		0,00004	0,00081	0,00529	0,01813
11		0,00001	0,00022	0,00193	0,00824
12			0,00006	0,00064	0,00343
13			0,00001	0,00020	0,00132
14				0,00006	0,00047
15				0,00002	0,00016
16					0,00005
17					0,00001