Mосква, Северо-восток

Сфера, описанная около конуса.
Отношение объемов конуса и описанной около него сферы

      Определение 1. Конусом, вписанным в сферу, называют такой конус, у которого вершина и окружность основания лежат на сфере (рис. 1).

      Определение 2. Если конус вписан в сферу, то сферу называют описанной около конуса.

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы
Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

Рис.1

      Утверждение. Около любого конуса можно описать сферу, причем только одну. Центр описанной сферы лежит на оси конуса.

      Доказательство. Рассмотрим конус высоты   h,   в основании которого лежит круг радиуса   r  с центром в точке   O' .   Обозначим буквой   S   вершину конуса, а буквой   A   – произвольную точку на окружности основания конуса (рис. 2).

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы
Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

Рис.2

      Рассмотрим сечение конуса плоскостью   ASO'   и проведем серединный перпендикуляр к отрезку   SA .   Обозначим буквой   O   точку пересечения этого серединного перпендикуляра с прямой   SO'   и соединим точку   O   с точкой   A   (рис. 3).

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы
Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

Рис.3

      По свойству серединного перпендикуляра точка   O   находится на одинаковом расстоянии от точек   A   и   S .   Обозначим это расстояние через   x   и покажем, что   x   не зависит от выбора точки   A   (рис. 4).

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы
Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

Рис.4

      Действительно, с помощью теоремы Пифагора из прямоугольного треугольника   AOO'   получим:

x2 = (h – x )2 + r2 ,

x2 = h2 – 2hx + x2 + r2 ,

2hx = h2 + r2 .

      Следовательно,

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

      Таким образом, мы установили, что точка   O   находится на одном и том же расстоянии   x,   которое зависит лишь от высоты и радиуса основания конуса, от всех точек окружности основания конуса и от его вершины   S .   Значит, точка   O   – центр сферы, описанной около конуса.

      Для доказательства единственности описанной около конуса сферы заметим, что точка, равноудаленная от всех точек окружности основания конуса, должна лежать на перпендикуляре к плоскости основания конуса, проходящем через центр этой окружности. А точка, равноудаленная от вершины конуса и от какой-либо точки на окружности основания конуса, должна лежать на серединном перпендикуляре к образующей конуса, проходящей через эту точку. Таким образом, центром сферы, описанной около конуса, может быть лишь построенная выше точка   O .

      Следствие 1. Радиус сферы, описанной около конуса с радиусом основания   r   и высотой   h   равен

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

      Следствие 2. Отношение объема конуса к объему описанной около него сферы можно найти по формуле

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферы

Подготовка к ЕГЭ и ОГЭ в учебном центре Резольвента

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферыподготовительные курсы для школьников 10 и 11 классов

      У нас также для школьников организованы

Сфера описанная около конуса конус вписанный в сферу радиус сферы описанной около конуса отношение объемов конуса и описанной около него сферыиндивидуальные занятия с репетиторами по математике и русскому языку

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

До ЕГЭ по математике осталось
днейчасовминутсекунд

НАШИ УСЛУГИ
Подготовительные курсы к ОГЭ и ЕГЭ
Подготовка к итоговому сочинению
Репетиторы
для школьников

Проблемы с
математикой?

ПОМОЖЕМ!

(495) 509-28-10

Подготовка к ОГЭ и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»

Сложно с геометрией?

ПРИХОДИТЕ!

(495) 509-28-10

Помощь школьникам 8 9 10 11 классов по геометрииУчебный центр «РЕЗОЛЬВЕНТА»

ЕГЭ
по русскому языку?

(495) 509-28-10
Курсы подготовки к ЕГЭ по русскому языкуУчебный центр «РЕЗОЛЬВЕНТА»


ЕГЭ по математике?

(495) 509-28-10
Курсы подготовки к ОГЭ и к ЕГЭ по математикеУчебный центр «РЕЗОЛЬВЕНТА»




Готовитесь
к ЕГЭ?

(495) 509-28-10
Учебные материалы для подготовки к ЕГЭУчебный центр «РЕЗОЛЬВЕНТА»

НАШИ ПАРТНЕРЫ

Rambler's Top100    Рейтинг@Mail.ru 

Метрика Яндекса
Яндекс.Метрика