Определение. Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).
Рис.1
Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.
На рисунке 1 медианой является отрезок BD.
Утверждение 1. Медиана треугольника делит его на два треугольника равной площади (равновеликих треугольника).
Доказательство. Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),
Рис.2
и заметим, что (см. раздел нашего справочника «Площадь треугольника»)
Поскольку отрезок BD является медианой, то
что и требовалось доказать.
Утверждение 2. Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1, считая от вершины треугольника.
Доказательство. Рассмотрим две любых медианы треугольника, например, медианы AD и CE, и обозначим точку их пересечения буквой O (рис. 3).
Рис.3
Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).
Рис.4
Теперь рассмотрим четырёхугольник FEDG (рис. 5).
Рис.5
Сторона ED этого четырёхугольника является средней линией в треугольнике ABC. Следовательно,
Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC. Следовательно,
откуда вытекает, что стороны ED и FG четырёхугольника FEDG равны и параллельны. Следовательно, четырехугольник FEDG является параллелограммомСледовательно, четырехугольник FEDG является параллелограммомСледовательно, четырехугольник FEDG является параллелограммом, а у параллелограмма диагонали в точке пересечения делятся пополаму параллелограмма диагонали в точке пересечения делятся пополаму параллелограмма диагонали в точке пересечения делятся пополам (рис.6).
Рис.6
Таким образом,
| FO | = | OD | , | GO | = | OE | .
Следовательно,
| AF | = | FO | = | OD | , | CG | = | GO | = | OE | .
Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении 2 : 1, считая от вершины треугольника.
Доказательство завершено.
Следствие. Все три медианы треугольника пересекаются в одной точке.
Доказательство. Рассмотрим медиану AD треугольника ABC и точку O, которая делит эту медиану в отношении 2 : 1, считая от вершины A (рис.7).
Рис.7
Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.
Определение. Точку пересечения медиан треугольника называют центроидом треугольника.
Утверждение 3. Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).
Рис.8
Доказательство. Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC, равна площади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).
Рис.9
Тогда
В силу утверждения 1,
что и требовалось доказать.
Утверждение 4. Длина медианы треугольника (рис. 10) вычисляется по формуле:
Рис.10
Доказательство. Воспользуемся теоремой косинусов, примененной к треугольникам DBC и ABD:
Складывая эти равенства, получим:
что и требовалось доказать.
Следствие. Длины медиан и длины сторон треугольника связаны формулой
Доказательство. В силу утверждения 4 справедливы равенства:
Складывая эти равенства, получим:
что и требовалось доказать.
Утверждение 5. В параллелограммепараллелограмме сумма квадратов диагоналей равна сумме квадратов сторон.
Доказательство. Рассмотрим рисунок 11.
Рис.11
Поскольку AO – медиана треугольника ABD, а DO – медиана треугольника ADC, то, в силу утверждения 4, справедливы равенства:
Следовательно,
d12 = 2a2 + 2b2 – d22,
d22 = 2a2 + 2b2 – d12.
Складывая эти равенства, получим
что и требовалось доказать.
Утверждение 6. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна половине гипотенузы (рис. 12).
Рис.12
Доказательство. Продолжим медиану CO за точку O до точки D так, чтобы было выполнено равенство CO = OD, и соединим полученную точку D с точками A и B (рис. 13).
Рис.13
Получим четырехугольник ADBC, диагонали которого в точке пересечения делятся пополам. В силу признака параллелограммапризнака параллелограммапризнака параллелограмма заключаем, что четырехугольник ADBC является параллелограммом, а поскольку полученный параллелограмм содержит прямой угол C, то и все его углы прямые, следовательно, четырехугольник ADBC – прямоугольникпрямоугольник. Поскольку диагонали прямоугольника равны, получаем равенства:
что и требовалось доказать.
Следствие. Середина гипотенузы прямоугольного треугольника является центром описанной около треугольника окружности (рис. 14).
Рис.14
Утверждение 7. Рассмотрим в пространстве или на плоскости декартову систему координат с началом в точке O и произвольный треугольник ABC. Если обозначить буквой M точку пересечения медиан этого треугольника (рис.15), то будет справедливо равенство
Рис.15
Доказательство. По свойствам векторов
Далее получаем
что и требовалось доказать.
На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.
До ЕГЭ по математике осталось | |||
дней | часов | минут | секунд |